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FOREWORD 

The Federal Highway Administration sponsored the research project, Parking Cruising Analysis 
Methodology, to develop a methodology to detect parking cruising. Cruising vehicles–motorists 
circling or cruising for on-street parking that is free or priced below market equilibrium–can 
contribute to additional congestion, air pollution, time wasted, driver frustration, and a potential 
loss of economic competitiveness at destinations where parking is hard to find and where 
alternative access modes do not exist. With increased sensitivity to the need for curb 
management, there is a need to better understand the prevalence of cruising for parking. 

This report documents a methodology and tool that can be used by municipalities and other 
interested parties to understand cruising for parking and the effects of policy interventions on 
parking search behaviors. It also includes case analyses from four U.S. cities. The cases illustrate 
a range of applications, such as identifying cruising hot spots—by both time of day and 
location—and assessing policy impacts. 
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T short tons (2,000 lb) 0.907 megagrams (or “metric ton”) Mg (or “t”) 

TEMPERATURE (exact degrees) 
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fl foot-Lamberts 3.426 candela/m2 cd/m2 
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ILLUMINATION 
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EXECUTIVE SUMMARY 

Motorists circling or cruising for on-street parking that is free or priced below market 
equilibrium can contribute to additional congestion, air pollution, time wasted, driver frustration, 
and a potential loss of economic competitiveness at destinations where parking is hard to find 
and where alternative access modes are limited. With increased sensitivity to the need for curb 
management, there is a need to better understand the prevalence of cruising for parking. 

Strategies to quantify cruising have evolved from intercept surveys to deployment of wireless 
technology sensors. Intercept surveys are effective at understanding the proportion of traffic that 
is looking for parking (which may not imply excess travel),1 while the wireless technology 
sensor deployment has been successful in distinguishing vehicles within the traffic stream that 
are circling for parking; both can be applied in very limited geographies. 

The methodology and tool presented in this report extends previous work that relied on global 
positioning system (GPS) breadcrumb data to overcome the physical limitations of other research 
methods. Big data allows for a more comprehensive assessment of the extent and location of 
excess parking search.2,3 The method also quantifies the measure of most direct policy interest—
excess travel from cruising, rather than the proportion of drivers searching for parking. The tool 
developed to generate reliable estimates of cruising (called Cruise Detector within this report) is 
a computer program that takes location data harvested from smartphones and sorts out which 
series of data points represent trips and which do not. Identified trips are then matched to a street 
network and compared against a shortest path that might have been taken. A trip that exceeds an 
available shortest path by a given threshold is assumed to include excess travel, most likely, due 
to parking search.  

The methodology and tool provide a data-driven way to identify the locations and times of day 
where cruising is most prevalent. They can be used by municipalities and other interested parties 
to understand cruising for parking and the effects of policy interventions on parking search 
behaviors in order to develop appropriate responses. The methodology and tool can be applied 
by a skilled geographic information system (GIS) analyst with some familiarity with 
programming languages. Potential computing resources are also described within the report. 

The research team applied the tool and completed case analyses for four U.S. cities: Washington, 
DC; Atlanta, Georgia; Chicago, Illinois; and Seattle, Washington. 

 

 
1 Millard-Ball, Adam; Hampshire, Robert; and Weinberger, Rachel (2019), “The curious lack of cruising for 

parking.” Land Use Policy, in press. 
2 Weinberger, Rachel; Millard-Ball, Adam; and Hampshire, R (2020) “Parking Search Caused Congestion: 

Where’s all the fuss?” Transportation Research Part C: Emerging Technologies vol 120. 
3 Hampshire, R., Jordon, D., Akinbola, O., Richardson, K., Weinberger, R., Millard-Ball, A. & Karlin-Resnick, 

J., 2016. Analysis of Parking Search Behavior with Video from Naturalistic Driving. Transportation Research 
Record: Journal of the Transportation Research Board, 2543, pp.152–158. 
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The cases illustrate a range of applications, such as identifying cruising hot spots by both time of 
day and location and assessing policy impacts: 

• Washington, DC. The focus in this case study is cruising for parking across Washington, 
DC. Special attention is focused on three sports stadiums, and when the stadiums have 
and do not have events planned. The analysis also emphasizes cruising in the areas 
around Metrorail stations. In lieu of a specific policy change that would lead to a 
before/after analysis, the findings here are cross-sectional, illustrating different cruising 
patterns for different urban forms: specifically proximate to Metrorail versus beyond the 
Metrorail catchment areas. 

• Atlanta, Georgia. The research team explored the geography of cruising across two 
different time periods. To the extent possible, the research team looked at the differences 
in single use versus mixed use areas and contrasted metered areas with those that allow 
free parking. The data covered the areas of Atlanta located in Fulton County.  

• Chicago, Illinois. This case study allowed the research team to showcase analyses that 
could be done with the raw location data. Raw location data were acquired for June 2019, 
2020, and 2021. Unfortunately, the data for June 2021 were of insufficient quality to 
include in the final analysis. The analysis proceeds with a focus on the 2 years for which 
data are of sufficient quality. 

• Seattle, Washington. Seattle has a performance pricing policy for its metered parking 
streets. Using annual surveys to estimate vehicle occupancy, the Seattle Department of 
Transportation (SDOT) raises, lowers, or leaves the same the parking meter prices in 
order to hit an occupancy/vacancy target. The research team examined cruising before 
and after price changes to the city’s metered parking. The research team also examined 
cruising in the 2 weeks before and after SDOT temporarily suspended all parking meters 
to ease the burden on essential travel during the worst of the COVID-19 pandemic. 

The report provides analyses results for each city, as well as overall observations considering all 
cities’ analyses. The highest rates of cruising were found in Seattle and Chicago where 7.3 and 
6.8 percent of trips, respectively, showed some portion as cruising. 

Through the analyses of the cities, the research team concluded the following: 

• Across all the cities in this analysis, the level of cruising is consistent, even when using 
different data sources. The estimates in this report are also comparable to earlier work 
using a similar methodology. 

• The consistency, even at times of day or in places where parking is readily available, 
suggests that many trips identified as cruising may not be people searching for parking, 
but rather people taking a longer route for other reasons. Thus, estimates of cruising may 
overstate the parking problem. 

• Consistency in the cruising estimates also point to an equilibrium level of cruising. Other 
work indicates that where parking is perceived to be scarce, drivers will often park short 
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of their destination, taking the first space they find.4 Where parking is readily available, 
drivers may be more selective about their choice of a parking space. An analogy is how 
roadway congestion reaches an equilibrium as some users switch modes or departure 
times based on their tolerance for traffic delay. 

• In general, cruising is a localized problem. The tool can identify hot spots, but even in 
these hot spots, the average time spent cruising is brief, and cruising only impacts a 
relatively small percentage of trips. 

The report documents lessons learned relating to data quality, tool implementation, and the 
analyses results. For example, both third-party processed data and raw location data have their 
own advantages and disadvantages. Therefore, users should carefully assess options for data 
acquisition, considering factors such as budget and the degree of flexibility desired to conduct 
additional analysis to find new results beyond what was initially sought. Data quality can vary 
greatly, and it is recommended to obtain samples of data to assess the resolution and quality. 
Information on how the data are collected may help the analyst assess potential biases.

 
4 Millard-Ball, Adam, Robert C. Hampshire, and Rachel R. Weinberger. 2020. “Parking Behaviour: The 

Curious https://doi.org/10.1016/j.landusepol.2019.03.031. 

https://doi.org/10.1016/j.landusepol.2019.03.031
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CHAPTER 1. INTRODUCTION 

Cruising vehicles cause a host of problems, such as adding congestion and air pollution to 
already congested and polluted neighborhoods, driver frustration, and a potential loss of 
economic competitiveness at destinations where parking is hard to find and where alternative 
access modes are limited. With increased sensitivity to the need for curb management, many 
approaches to understanding curb use and the prevalence of cruising for parking have emerged.  

Strategies to quantify cruising have evolved from intercept surveys to sophisticated wireless 
technology sensors. Intercept surveys are effective at understanding the proportion of traffic that 
is looking for parking (which may not imply excess travel).5 Wireless technology deployment 
has been successful in distinguishing vehicles within the traffic stream that are circling for 
parking in very limited geographies.6  

The extent of cruising remains unclear. Research has been conducted in the locations where 
cruising is known to be an issue. However, results have been inappropriately extrapolated across 
wide regions. For example, it is often taken on faith that “…30% of urban traffic comes from 
cars hunting for parking spaces.”7 This has been traced to an analysis8 that averaged the results 
of a limited number of studies and concluded that 30 percent of vehicles in congested 
downtowns are searching for parking. The misinterpretation stems not only from the fact that the 
studies were performed just where cruising was perceived to be a problem, but also from taking 
the straight average of these limited number of studies without regard to community size, date of 
the analysis, whether the analysis was conducted in a downtown or neighborhood, or other 
conditions that might affect the outcome. There have been attempts to debunk the 30-percent 
figure,9,10 but it is still widely used in academic and policy settings.  

Many existing research methods, such as counting vehicles passing an empty space and tracking 
parking availability by bicycle, quantify the percentage of traffic searching for parking, rather 
than quantify the excess traffic and pollution from cruising. The difference is subtle but 
important for policy; the strategy is also applicable only in limited geographies. Almost all trips 
end in a search for parking, with the exception of drop-offs and those ending in reserved parking. 
When close to a destination, up to 100 percent of traffic is searching for parking. A study that 
finds a high percentage of traffic is searching for parking may reflect the absence of through 
traffic as much as scarcity of parking. As shown in Figure 1, in some circumstances scarce 

 
5 Adam Millard-Ball, Robert Hampshire, and Rachel Weinberger, “Parking Behaviour: The Curious Lack of 

Cruising for Parking in San Francisco,” Land Use Policy 91 (2020): 103918. 
6 Gregory Barlow, Isaac Isukapati, Stephen Smith, Soumya Dey, Stephanie Dock, Benito Perez, Alex 

Pochowski “Measuring Cruising for Parking in Washington, DC Using Dense, Ubiquitous AVI Sensor Networks” 
2018 TRB paper (https://trid.trb.org/view/1495676 ) 

7 Eilene Zimmerman, “A Silver Bullet for Urban Traffic Problems,” CNN Money, April 29, 2011, 
http://money.cnn.com/2011/04/29/technology/streetline/. 

8 Donald Shoup, “Cruising for Parking,” Transport Policy 13, no. 6 (2006), 479–486. 
9 Steven Polzin, “Playing ‘Telephone’ with Transportation Data,” Planetizen, July 11, 2016. 

http://www.planetizen.com/node/87288/playing-telephone-transportation-data.  
10 Paul Barter, “Is 30% of Traffic Actually Searching for Parking?,” Reinventing Parking, October 7, 2013, 

http://www.reinventingparking.org/2013/10/is-30-of-traffic-actually-searching-for.html. 
 

https://trid.trb.org/view/1495676
http://money.cnn.com/2011/04/29/technology/streetline/
http://www.planetizen.com/node/87288/playing-telephone-transportation-data
http://www.reinventingparking.org/2013/10/is-30-of-traffic-actually-searching-for.html
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parking could even reduce vehicle miles traveled. This occurs when drivers park short of a 
destination because they perceive parking to be scarce at the destination (not to mention when, 
for the same reason, they choose to forgo driving and instead access the destination using transit 
or non-motorized modes).11  

 
Source: FHWA. 

Figure 1. Illustration. Scarce parking can reduce vehicle miles traveled. 

This report extends previous work that had relied on global positioning system (GPS) 
breadcrumb data to overcome the physical limitations of other research methods. Big data allows 
for a more comprehensive assessment of the extent and location of excess parking search.12,13 
The method also quantifies the measure of most direct policy interest—excess travel from 
cruising, rather than the proportion of drivers searching for parking.  

Along with documentation of the research strategy and Cruise Detector (i.e., the tool the study 
team developed to generate reliable estimates of cruising), this report includes case analyses 
from four U.S. cities. The cases illustrate a range of applications, such as identifying cruising hot 
spots by both time of day and location and assessing policy impacts. To assist cities in making 
parking policy and investment decisions, Cruise Detector is freely available and can be openly 
accessed.  

 
11 Millard-Ball, Adam; Hampshire, Robert; and Weinberger, Rachel (2020), “Parking Behavior: The curious 

lack of cruising for parking in San Francisco.” Land Use Policy, 91: 103918. 
12 Weinberger, Rachel; Millard-Ball, Adam; and Hampshire, R (2020) “Parking Search Caused Congestion: 

Where’s all the fuss?” Transportation Research Part C: Emerging Technologies vol 120. 
13 Hampshire, R., Jordon, D., Akinbola, O., Richardson, K., Weinberger, R., Millard-Ball, A. & Karlin-Resnick, 

J., 2016. Analysis of Parking Search Behavior with Video from Naturalistic Driving. Transportation Research 
Record: Journal of the Transportation Research Board, 2543, pp.152–158. 
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PURPOSE AND SCOPE 

There are uncertainties and a lack of understanding of the full impact that parking cruising has on 
cities. There is also a paucity of understanding about the effectiveness of interventions. Recently 
funded studies include the direct precursor to this one,14 which provided a proof-of-concept to 
use GPS traces to identify a signature of cruising for parking. A related project15 deployed a set 
of wireless sensors throughout a study area that connects to devices in passing vehicles and 
identifies how often a vehicle passes the same point. Using information on how frequently and in 
what time frame a vehicle passes a certain point, an assessment is made regarding the extent of 
cruising in that area. 

The National Cooperative Highway Research Program has undertaken a recent review of 
dynamic curb management.16 Any number of departments of transportation have looked into the 
question as well, with many adopting performance pricing (designed to align parking demand 
with parking availability) and other strategies to combat problems that stem from parking 
shortages. The scope and purpose of this work is to develop a robust, freely available tool (i.e., 
Cruise Detector) that allows cities to understand the impact and extent of traffic generated by 
parking search and to test policy interventions. This report provides documentation on Cruise 
Detector and discusses its application. 

Cruise Detector can address the following questions (for the first four questions, specific 
examples of the analysis are provided in Chapter 3 of this report):  

• How big a problem is cruising? The question is addressed using Atlanta, Georgia, as a 
use case. 
o How much cruising is there in specific urban locations? 
o How does cruising vary across space and time of day? 

• Does cruising change from year to year? 
o An analysis of Chicago cruising in 2019 and 2020 is used as a month-over-month use 

case for the longitudinal analysis. The Atlanta case is also used to examine 
longitudinal differences examining travel and parking behavior in the months leading 
to March 2020 when pandemic lockdowns began and then for several months after.  

• Where do people cruise? Washington, DC, serves as a use case to illustrate how a city 
might address these questions. 
o Is cruising more prevalent at tourism destinations? 
o In denser neighborhoods? 
o Around particular land uses? 

• Are policies such as performance pricing effective in deterring cruising? Seattle, 
Washington, serves as a use case to determine this by answering these questions: 
o How effective are different management strategies in reducing cruising? 

 
14 Rachel Weinberger, Adam Millard-Ball, Robert Hampshire. 2016. Parking-Cruising Caused Congestion Final 

Report SBIR, USDOT Available at SSRN: https://ssrn.com/abstract=2906528. 
15 Rapid Flow Technologies “Parking-Cruising Caused Congestion & Targeting Public Mitigation Investments” 

SBIR contract DTRT5715C10025. 
16 NCHRP “Dynamic Curbside Management: Keeping pace with the new and emerging mobility and 

technology in the public right-of-way.” Web only https://www.trb.org/Publications/Blurbs/182823.aspx  

https://ssrn.com/abstract=2906528
https://www.trb.org/Publications/Blurbs/182823.aspx
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o What happens when meter prices are adjusted to better match parking demand with 
supply? 

o What about meter suspension?  
• Why do people cruise? No specific use case is presented for this question (although this 

study provides some insights related to the second question below), but it is an obvious 
question for Cruise Detector to address. 
o Do people cruise: 1) because no space is available, 2) because no space is available 

that is free of cost, 3) because no unrestricted (e.g., overnight allowed) space is 
available, or 4) because of other reasons?  

• How do people cruise? 
o What are the patterns of a cruising driver? 
o Do these cruising behaviors cluster into types?17 
o Given types of cruising behaviors, what policy interventions will reduce cruising?  

• What are the long- and short-term impacts of cruising on congestion? 
o How do they affect mode choice or car ownership decisions? For example, does 

reducing cruising promote mode shift to the private car, as finding parking becomes 
less onerous?  

 
17 Adam Millard-Ball, Rachel R. Weinberger, and Robert C. Hampshire, “The Shape of Cruising,” Findings 

(September 15, 2021), https://doi.org/10.32866/001c.28061. 

https://doi.org/10.32866/001c.28061
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CHAPTER 2. PROJECT DESCRIPTION 

METHODOLOGY AND APPROACH 

The approach in this project is to create and demonstrate a free, publicly available tool that 
municipalities and other interested parties can use to understand cruising for parking and the 
effects of policy interventions on parking search behaviors. 

There are two segments to the project: developing a GPS-dependent system, Cruise Detector, to 
analyze parking search, and a GPS-independent cruise estimator (G-ICE). The methodology for 
developing each is described in turn. 

CRUISE DETECTOR 

Cruise Detector uses large data sets comprised of GPS locations (or breadcrumbs) harvested 
from smartphones or navigation devices. By studying the circuity of paths and concentrations of 
circuitous paths, an analyst can visualize and quantify the extent of cruising for parking. A 
circuitous path, defined as 200 meters in excess of a counterfactual shortest path, is designated as 
excess travel due to parking search, or simply as cruising. Geographic information system (GIS) 
analysis shows where cruising trips are located within the geography the data are analyzed. 

The project developed a methodology and related code to analyze the breadcrumb data. 
Instructions for how to use the code are given in appendix B. Components of the code are 
described in detail in a number of journal articles that are incorporated in this document by 
reference. The process is divided into these steps:  

1. Determine streams of GPS location pings that represent travel. 
2. Match the GPS data streams to a street network.18 Each trace match is given a probability 

score. 
a. If the probability score exceeds a certain user-defined threshold, the match is 

considered acceptable for analysis. 
b. If the probability score is below the user-defined threshold, the trace is rejected and 

dropped from further analysis. 
3. Build a potential parking search radius around the final location. 
4. Determine a shortest path from the search radius boundary to the final location. 
5. Compare the path taken with the shortest path. 

a. If the path taken is equal to the shortest path or longer, up to 200 meters, the trip is 
designated as not cruising. 

b. If the path taken is greater than 200 meters longer than the shortest path, the trip is 
designated as cruising. 

6. Analyze the processed data to gain insight into cruising conditions in the area of interest. 

 
18 Adam Millard-Ball, Robert C. Hampshire & Rachel R. Weinberger, “Map-Matching Poor-Quality GPS Data 

in Urban Environments: The pgMapMatch Package,” Transportation Planning and Technology 42, no 6 (2019): 
539-553, 10.1080/03081060.2019.1622249. 
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Two data approaches to using Cruise Detector are tested. The first approach uses raw location 
data purchased directly from a data consolidator. This preserves the geometry of the trip, 
enabling the analyst to aggregate to spatial units and time periods for which there are sufficient 
data and allowing for insight regarding the actual search paths. The Chicago analysis and some 
of the Seattle analysis rely on these disaggregate data. The second approach relies on processed 
output of the system described here. A third-party owns the relevant data and processes the data 
behind a privacy firewall using the software developed in this project. The output is provided as 
point data at the street or block group level (or a requested aggregation). The shortcoming of this 
approach is the inability to understand the parking search path.  

Using raw location data purchased from a vendor is likely to be the more common 
implementation of Cruise Detector. Many such data consolidators are available, and the data will 
vary from one vendor to the next. In some cases, data may already be segmented into trips, while 
in other cases the vendor may provide unprocessed GPS points and require the user to clean the 
data and identify which points represent trips rather than a static location, such as home or work.  

This project does not attempt to assess consolidators, as the relative strengths are highly 
dynamic. Instead, users of Cruise Detector will have to assess data quality when using the tool. 
Privacy protections are dynamic and can affect data quality. Even within the time line of this 
project, applications that had previously broadcast steady streams of location data were modified 
to allow users to set preferences as to whether data would be transmitted only when that 
application was in use or at all times. This privacy protection limits the quantity and quality of 
data that had previously been available. Appendix A provides a data comparison between the 
processed output and the raw location data. 

Determine Streams of Global Positioning System Location Pings That Represent Travel 

The data will come in the form of anonymized location data from navigation devices or an 
unknown set of cellular phone applications. The data are messy and of variable quality but there 
is generally a large quantity, and sufficient trips can be identified to make inferences about 
relative frequency of trips and cruising trips. The data are unweighted and not useful for making 
inferences about the total number of trips or trip lengths. 

Location pings from each specific device are organized chronologically and linked together to 
form traces. If there is a 10-minute or greater gap between two location pings, a new trace 
designating a new trip is formed. To create a trip that can be fitted to a street network, a trace 
must comprise relatively consistent and frequent pings. A threshold of 90-second intervals is a 
minimum requirement; otherwise, some cruising trips are likely to be missed and results will be 
biased downward. Greater frequency is preferred. Pings with low horizontal accuracy, i.e. 
incorrectly recorded latitude and longitude, are removed. Pings that would require unrealistic 
travel speeds to get from one location to the next are also removed. 

Many of the traces represent only that the transmitting device is being moved around a single 
location, such as the owner’s home or office. To be considered a trip, a minimum distance of 400 
meters must exist between the start and the end of the trace. The final trip filter required the trip 
to be at least 5 minutes in duration. Figure 2 illustrates a series of pings overlaid on a 
hypothetical street grid. Figure 3 includes lines that link the dots in chronological order. The 
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various groupings show 10-minute or greater gaps between the end of one trace and the 
beginning of the next. Once the trips are established they are matched to a map so useful 
comparisons to network paths can be made.  

 
Source: FHWA. 

Figure 2. Illustration. Locations overlaid on a hypothetical street grid.  

 
Source: FHWA. 

Figure 3. Illustration. Locations linked chronologically. 
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Match the Global Positioning System Data Streams to a Street Network 

Figure 4 shows how the trace is aligned to the street grid. The cluster in the top-right of the 
figure fails the criterion of 400 meters from beginning to end; it is therefore rejected as a trip (it 
may well represent someone walking around a home or an office). The ping in the bottom-right 
of the figure that attaches to points in the top-left of the figure fails the credible speed test and is 
also eliminated. After these trip parsing and data cleaning steps, the mapmatch algorithm 
determines the most likely path a trip will have taken.  

 
Source: FHWA. 

Figure 4. Illustration. Probable trips. 

The matching relies on a probabilistic model that considers candidate streets on which a ping 
might actually belong; from there, the actual path is estimated with probability.19 Each trace is 
given a score reflecting the likelihood it is correctly matched to the underlying street grid. The 
analyst would select and only use the ones that meet a threshold for likelihood of being a good 
match.  

Build a Potential Parking Search Radius around the Final Location  

The next three steps are to: 1) build a parking search radius around the end point of each trip, 2) 
determine the shortest path between the trip end point and the point of entry to the search radius, 
and 3) map the actual path taken from the point of entry to the trip end point. Figure 5 shows all 
three steps. The star in Figure 5 indicates the final ping of the trip, the dashed line shows the path 
taken, and the dotted line shows the shortest path. In this example, the path taken exceeds the 
shortest path by over 200 meters and the trip is identified as cruising.  

 
19 Adam Millard-Ball, Robert C. Hampshire & Rachel R. Weinberger, Map-Matching Poor-Quality GPS Data 

in Urban Environments: The pgMapMatch Package” (2019). 
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Source: FHWA. Map data ©2022 OpenStreetMap® contributors. 

Figure 5. Illustration. Cruising: identified when paths traveled exceed shortest paths.  

It is assumed that drivers do not begin searching for parking until they are 400 meters from their 
final location. The trace is truncated so that it includes all points after it enters the 400-meter 
radius, plus the preceding point. The trace can enter and leave the 400-meter radius several 
times—for example, if drivers cruise for parking over an extended area. Figure 5 illustrates the 
boundary and a hypothetical trip that has left and reentered the search area. 

Determine a Shortest Path from the Search Radius Boundary to the Final Location 

The pgRouting package is used to calculate the shortest path to their final location from when the 
driver first enters the 400-meter radius. The path takes account of one-way streets and turn 
restrictions, provided they are correctly mapped in the underlying street network data. This 
analysis uses OpenStreetMap® data, which is high quality and freely available. Again, refer to 
Figure 5. 

Compare the Path Taken with the Shortest Path 

The difference between the actual (map-matched) path and the shortest path indicates whether 
cruising occurs. If the difference is greater than 200 meters, the trip is classified as cruising. If 
the difference is zero, the driver takes the most direct route and no cruising occurs. The 200-
meter threshold20 is used because small deviations from the shorter path are generally due to 
irregularities in the street grid or other imperceptible differences to the driver.  

 
 

 
20 Rachel Weinberger, Adam Millard-Ball, & Robert Hampshire, Parking search caused congestion: Where’s all the 
fuss?. Transportation Research Part C: Emerging Technologies (2020). 120. 102781. 10.1016/j.trc.2020.102781. 
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Analyze the Processed Data to Gain Insight into Cruising Conditions 

The final step is to analyze the processed trips. Chapter 3 provides four use cases that 
demonstrate how the data can be analyzed. Statistics of interest could include average time spent 
cruising in different parts of a city or at different times of day, before-after-analyses bracketing a 
policy change, or location of cruising hot spots. Analysis can be presented as maps. Figure 6 
shows cruising in Chicago based on disaggregate data and Figure 7 shows cruising in Atlanta 
based on data aggregated to the census block group level. Analysis can also be presented as a 
tabulation, as shown in Table 1, or a graph, as shown in Figure 8.  

 
Source: FHWA. 

Figure 6. Map. Example showing Chicago cruising hot spots disaggregate data. 



15 
 

 
Source: FHWA. 

Figure 7. Map. Example showing Atlanta cruising hot spots aggregate data. 

Table 1. Seattle mean cruising time by street type and time of day, in seconds. 

Street Type 2–4 p.m. 6–8 p.m. Other Times 
Metered streets 148 140 113 
Near metered 110 117 111 
Non-metered 57 49 56 
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Source: FHWA. 

Figure 8. Graph. Example showing diurnal distribution of trips and cruising trips 
Washington, DC. 

The project used and tested two primary data sources in the project execution. The first data 
source and accompanying basic analysis accrue to a GPS data aggregator that provides other 
transportation planning data analysis. The code developed in this project was given to the data 
aggregator and run on its secure server. The aggregator’s data represent trips inferred from large 
samples of location data collected from smartphone applications. The second data source is also 
a GPS data aggregator that sells data, but it does not provide other data analysis services. Using 
these location data, the project team inferred directly from raw location data and conducted 
further analysis to determine the extent of cruising. 

CODE DEVELOPMENT 

Cruise Detector uses three bespoke software processes. The first process converts location data 
into trips. The second process is a map-matching algorithm that snaps the trips to a transportation 
network so the trips can be analyzed and compared against an underlying transportation network; 
this is done to make a fair comparison to shortest path. This process determines the likelihood 
that a series of location points is correctly aligned with a known underlying geographic path. The 
third process compares trips to a potential shortest path and determines, with probability, 
whether a trip implied excess driving in pursuit of a parking place. Appendix B provides 
instructions for using the code. 

GLOBAL POSITIONING SYSTEM-INDEPENDENT CRUISING ESTIMATES MODEL 

Not every jurisdiction will be able to obtain GPS data, or GPS data of sufficient quantity and 
quality to be of use. A project goal had been to develop G-ICE, a GPS-independent cruise 
estimator. After several development attempts, the project team determined that, based on the 
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data available, an effective tool could not be developed. Appendix C provides details of this 
effort. 
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CHAPTER 3. SPECIFIC CITY FINDINGS 

The use cases provide baseline information for each location, followed by a comparison to the 
baseline. The Washington, DC, and Atlanta cases rely on processed output from the third-party 
GPS aggregator. The aggregator analyzed its data for trips and cruising trips using the system 
developed by the Federal Highway Administration (FHWA) and this project team. The research 
team specified 15,000 geographies (i.e., streets or aggregations of streets—in this case, 
sometimes census block groups). The limit was a contract condition of the aggregator/processor. 
Thus, individual results for each street face were unobtainable. Instead, street faces of particular 
interest were specified with other results aggregated to the census block group level. For the 
Washington, DC, and Atlanta cases, the data are therefore presented at the block group level with 
more detailed analysis into the areas where street faces have been specified. 

The Chicago analysis uses raw location data that were processed by the project team. In the 
Chicago case, data are available at the street-face level for wherever trips have been made. The 
Seattle case includes processed output by the third-party GPS aggregator and analysis based on 
individual location data provided by a data broker. The approach in Seattle was designed to 
facilitate comparisons between the two different data sources. 

Each case answers certain questions, but also raises questions related to data sources and 
interpretation that can be mediated in future analyses. For example, the Seattle case shows an 
increase in cruising on metered blocks after a price change. Given that the analysis is based on 
locations of trip ends and not cruising paths, the meaning of that finding is unclear. From the trip 
end locations alone, the analyst knows with certainty where the trip ends, but not the process of 
parking search. The following possible interpretations are listed in order of likelihood, based on 
professional judgment: 

• Drivers cruised for parking and more quickly found a spot on a metered street because 
the price change affected availability as intended. 

• Drivers reacted to the price increase and searched for a better bargain. Quickly realizing a 
bargain was not to be had, the driver accepted a vacant space on the metered block. 
o This problem might resolve itself and can be studied again after the market has had 

time to absorb the price shock. 
o This may be an unintended consequence of the policy change. 

• The policy change had no effect on availability; other research21,22 has shown that 
multiple price changes may be needed before a change in driver behavior can be 
measured. 

Similarly, in the Chicago case, data were analyzed for the month of June across 3 years. Data for 
the third year were poor quality and were not useful for the analysis. The analysis shows 

 
21 A. Millard-Ball, R. Weinberger, and R. Hampshire. 2014 “Is the Curb 80% Full or 20% Empty? Assessing 

the Impacts of San Francisco’s Parking Pricing Experiment” Transportation Research Part A Vol.63, 2014, pp. 76-
92. 

22 A. Millard-Ball, R. Weinberger and R.C Hampshire. 2013. “Comment on Pierce and Shoup, Evaluating the 
impacts of performance-based parking” Journal of the American Planning Association, 79(4)  330-336. 
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potentially important differences between the 2 years for which there are good data. However, 
given the experiment, whether the observed differences are true differences or sampling 
differences is unclear. Had the analysis been strictly an analysis of Chicago, rather than a study 
of use cases for broad application, the recommended approach would be to acquire additional 
data to corroborate the findings. Instead, the analysis is presented with these caveats. While the 
results are potentially interesting, caution should be exercised when drawing conclusions as 
abstraction may not be justified on the basis of this analysis. 

The following sections show baseline and comparative case conditions for Washington, DC; 
Atlanta; Chicago; and Seattle in that order. The Seattle case comprises multiple analyses 
showing a business-as-usual meter price adjustment—a special case wherein all metered pricing 
is revoked, and a data comparison showing the benefits and shortcomings of two different data 
sources. 

WASHINGTON, DC: CROSS-SECTIONAL ANALYSIS FOCUS ON METRORAIL 
STATIONS 

Washington, DC, has a varied landscape with respect to density, activity type, and transportation 
infrastructure. The focus in this case study is cruising for parking across Washington, DC. 
Special attention is focused on three sports stadiums, and when the stadiums have and do not 
have events planned. The analysis also emphasizes cruising in the areas around Metrorail 
stations. Washington, DC, data span January 1–December 3, 2018. In lieu of a specific policy 
change that would lead to a before/after analysis, the findings here are cross-sectional, 
illustrating different cruising patterns for different urban forms: specifically proximate to 
Metrorail versus beyond the Metrorail catchment areas. 

The data have been processed by a third-party data consolidator. This analysis is based on a data 
set of trip ends by time of day. Figure 9 illustrates the study area indicating the streets for which 
street-level data are available.  
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Source: FHWA. 

Figure 9. Map. Washington, DC, study area. 

Where Cruising Occurs 

Cruising is higher in the areas around Metrorail stations where there is an overall higher 
concentration of trips relative to street length. The streets in the Metrorail catchments comprise 
23 percent of Washington, DC, street length and account for 45 percent of trip ends. Thus, the 
trip intensity in the Metrorail catchment area is almost twice what it would be if trips were 
evenly distributed throughout the street network. Cruising is almost evenly split between the 
Metrorail catchment areas and the rest of the city (51/49), meaning that half of the cruising is 
concentrated on about one-quarter of the streets. In comparing trips, cruising trips are slightly 
disproportionately represented near the Metrorail stations (45 percent of trips and 51 percent of 
cruising trips) and heavily concentrated there on a street-length basis (51 percent of cruising trips 
and 23 percent of street miles).  

Washington, DC, has an aggregate cruising rate of 5.8 percent and 6.6 percent around Metrorail 
stations where the concentration of all trips (cruising or not) is very high. Figure 10 shows 
cruising frequency by block group. To avoid the potential problem of statistical outliers, areas 
with fewer than 30 observations are not shown.  
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Source: FHWA. 

Figure 10. Map. Washington, DC, cruising frequency. 

The amount of time spent cruising and the distance cruised are also important urban concerns. 
The average length of a cruising trip is just over 2 minutes, but the time can vary substantially. 
Figure 11 captures and ranks cruising in Washington, DC, by showing the aggregate time spent 
cruising in each block group. The block group average cruise time is weighted by the number of 
trips for which cruising is a component; this aggregate is divided by the street length of each 
block group to account for differences in size (i.e., if one block group has twice as much land 
area and corresponding street length than another, more trips relative to the smaller block group 
are expected). The modified measure is average time spent cruising per block within each block 
group. 



22 
 

 
Source: FHWA. 

Figure 11. Map. Washington, DC, cruising impact. 

When Cruising Occurs 

Figure 12 shows the diurnal distribution of all trips and trips that include cruising. Cruising trip 
intensity lags trip making. This can be interpreted as resulting from earlier trips using available 
parking leaving fewer spaces open for later trips, which can show up as cruising. Other ways of 
looking at the data follow; the primary hypothesis holds. 

Figure 13 shows the diurnal pattern of trip making with traditional morning and afternoon peaks, 
superimposed on the rate of cruising (number of cruising trips/number of trips). The rate of 
cruising is highest in the hours just past midnight, although that coincides with the time of lowest 
trip making and fewest absolute cruising trips (see Figure 14 for cruising trips by time of day). 
Cruising is lowest during the morning peak travel period and increases as the day wears on. A 
probable explanation for higher levels of cruising during midday and early dawn is that most 
people will have reached their destinations and parked at those times, leaving a relative scarcity 
of available spaces. This is the same phenomenon shown in Figure 12 as a lag. Early arrivers get 
the spaces, which leaves none for those who come after. At the same time, there is likely both 
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more turnover and more availability during the traditional travel peaks, as some travelers are 
departing, others arriving, and many others en route somewhere.  

 
Source: FHWA. 

Figure 12. Graph. Diurnal distirbution of all trips and cruising trips. 

 

 Source: FHWA. 

Figure 13. Graph. Cruising frequency and overall trip making. 

A close look at the Metrorail catchment areas shows a similar pattern. Trip making is highest in 
the morning peak period, when the proportion of cruising trips is low. As more trips have been 
completed and more parking spaces used, the relative difficulty of parking increases and cruising 
trips as a proportion of all trips begins to rise. As more trips are made in the traditional afternoon 
peak, parking eases—demand may drop at the same time that supply increases—and cruising as 
a proportion of all trips declines. Cruising as a percent of all trips is relatively stable in the 
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Metrorail catchment area, climbing between 8 and 11 a.m. and remaining between 6 and 8 
percent through the afternoon and evening.  

 
Source: FHWA. 

Figure 14. Graph. Cruising frequency and total trips, Metrorail catchment area. 

 
Source: FHWA. 

Figure 15. Graph. Cruising frequency and total trips, outside Metrorail catchment. 

Figure 16 shows what time of day cruising trips occur, superimposed with the frequency relative 
to all trip making. From the perspective of when cruising occurs in Washington, DC, the highest 
occurrence is during traditional business hours. Cruising trips are increasing as a proportion of 
total trips and in absolute numbers from 8 a.m. to about noon; thereafter, the hourly rate of 
cruising remains relatively steady until about 6 p.m., when it begins to drop off sharply. 
However, as a percent of all trip making, cruising trips decline from noon to about 5 p.m., at 
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which time they increase again relative to all trip making. Most noteworthy is the late 
afternoon/early evening period when absolute cruising is near its highest but as a percentage of 
trips it is relatively low. 

 
Source: FHWA. 

Figure 16. Graph. Diurnal distribution of cruising and cruising as percent of all trips. 

The team hypothesized that cruising on stadium event days might be more intense than on other 
days, but the analysis does not support that finding. All Washington, DC, stadiums are relatively 
easily accessed by Metrorail, and additional impacts were not detected. 

Summary 

Overall cruising rates in Washington, DC, tend to the national average at around 5.8 percent of 
trips. Both trip making and cruising are highly concentrated on the streets surrounding Metrorail 
stations. These streets comprise about 23 percent of street miles. However, 45 percent of trips 
end on streets in the Metrorail catchment and 51 percent of cruising trips end on streets in the 
Metrorail catchment areas. This disproportion puts the cruise rate for trips ending near Metrorail 
at 6.6 percent. Cruising impact is further concentrated in the area considered downtown 
Washington, DC. 

The diurnal distribution of cruising trips is similar to findings in other cities in that there is a trip-
making lag. Cruising for parking as a proportion of trips is at its lowest during the morning 
commute hours and steadily builds from there, peaking at midday. Cruising as a percent of all 
trips hits a local minimum during the afternoon commuting peak, increasing into the evening. 
Finally, it appears from these data that cruising is not exacerbated by events held at the 
Washington, DC, stadiums, which are relatively well served by transit.  
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ATLANTA, GEORGIA: LONGITUDINAL ANALYSIS AND MIXED-USE FOCUS 

In this case study, the research team explored the geography of cruising across two different time 
periods. To the extent possible, the research team looked at the differences in single use versus 
mixed use areas. The data span from October 2019 to September 2020 and covered the areas of 
Atlanta located in Fulton County. 

There are two defined periods within this time frame: 

• Baseline: October 1, 2019–March 31, 2020, with a carve-out for the holiday period from 
November 25, 2019, to January 5, 2020 

• Early COVID: April 1, 2020–September 30, 2020 

The data are processed by a third-party data broker and results are reported at census block group 
level for much of the city in Figure 17). Street level outputs are available for the areas outlined 
and shown in green; these streets are characterized as mixed use. The data reported refer to the 
end locations of cruising trips. The area of detail (i.e., mixed use areas) includes downtown 
Atlanta and Buckhead.  
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Source: FHWA 

Figure 17. Map. Atlanta study area. 

Where Cruising Occurs 

Figure 18 shows cruising frequency by census tract. Tracts that had fewer than 30 trips were 
excluded from the analysis The outline delineates the areas for which street-level output is 
available. These subareas are examined in greater detail later in this chapter. 

The baseline average weekday cruising rate in Atlanta is 4.9 percent of trips; the 75th percentile 
rate for block groups is 6.5 percent, suggesting very little variation. In mixed use neighborhoods, 
those for which the project team was able to analyze street-level data, baseline cruising averages 
7.4 percent.  
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Source: FHWA. 

Figure 18. Map. Baseline cruising Atlanta. 

Not all cruising is equal, and although the mean time spent looking for parking among cruising 
trips is under 2 minutes, it can vary. Figure 19 shows total cruising time for each block group by 
weighting the average cruising time by the number of cruising trips that occur. To account for 
the different sizes of block groups, the result is normalized by the street length within each block 
group. The darkest areas in figure 3 indicate the areas of Atlanta with the most severe cruising 
concern. 
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Source: FHWA. 

Figure 19. Map. Cruising impact. 

When Cruising Occurs 

Figure 20 illustrates cruising over the course of an average weekday in Atlanta. As occurs in 
other cities, cruising tends to lag trip making—the first arrivers would easily find parking. 
Cruising disproportionately occurs starting around 6 a.m., earlier than is seen in other cities, but 
possibly due to the relative paucity of on-street parking. The proportion of cruising trips drops 
sharply along with all trips after 7 p.m.  

Cruising, as a proportion of all trips, is relatively stable, remaining between 4 and 6 percent of 
trips throughout the day. There is a small spike at around 1 a.m., as is documented in other cities, 
when trip making is at its lowest. This is illustrated in Figure 21. 
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Source: FHWA. 

Figure 20. Graph. Diurnal distirbution of all trips and cruising trips. 

 
Source: FHWA. 

Figure 21. Graph. Cruising frequency and overall trip making. 

Downtown and Buckhead 

The analysis in this section is of street-level data; it provides a close up of what is happening in 
downtown Atlanta and Buckhead. The streets were selected for the characteristic of having 
mixed land use. Figure 22 exploits the block-specific trip end data to show, for the smaller area, 
where trips end. The highest trip density is heavily concentrated in the center of downtown. 
Figure 23 shows the frequency of cruising. Almost no cruising occurs where the most trips end; 
instead, there are small pockets of high-intensity cruising scattered throughout downtown with 
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some of the most intense cruising hot spots located in Buckhead. The baseline average weekday 
rate of cruising in the sub area is 7.4 percent. The average time spent looking for parking is about 
2 minutes.  

 
Source: FHWA. 

Figure 22. Map. Atlanta area of detail trip ends. 
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Source: FHWA. 

Figure 23. Map. Atlanta area of detail cruising trip ends. 

Downtown Atlanta cruising follows a similar pattern to citywide cruising, showing a slight lag in 
the morning. Both trips and cruising trips peak in the morning, slowly decline at midday, and 
reach a muted peak in the afternoon (Figure 24). The data are presented using a rolling average 
to allow an easier visualization in an otherwise more erratic presentation that would have been 
due to the smaller data set. 
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Source: FHWA. 

Figure 24. Graph. Diurnal distribution of trips. 

Figure 25 shows the diurnal distribution of trips, with a line showing the proportion of trips that 
are cruising throughout the day. The cruising rate in downtown Atlanta and Buckhead is 
relatively flat, ranging from around 6 to almost 9 percent of trips. This is shown in Figure 25. 

 
Source: FHWA. 

Figure 25. Graph. Proportion of trips cruising. 
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Comparison Case: April 1–September 30, 2020 

After mid-March 2020, many U.S. cities instructed their residents that only trips defined as 
essential travel should be taken. Trip making was highly curtailed. The next section compares 
travel during this period with the baseline described above. 

As illustrated in figures 26, 27, 28, and 29 during the comparison period, different patterns for 
trip destinations and cruising emerged. Even with patterns shifting, cruising remained relatively 
stable, at 4.7 percent, citywide (compared to 4.9 percent) and 7.9 percent in the area of detail (an 
apparent, but statistically insignificant, increase from the baseline 7.4 percent) in the mixed use 
areas of downtown and Buckhead.  

Figure 26 corresponds to the baseline representation of Figure 18 to show cruising by census 
tract in the April–September period. Figure 27 corresponds to Figure 19 illustrating cruising 
impact (i.e., cruising trips weighted by the amount of time spent cruising and normalized by 
street length for block groups). Compared to the baseline maps, there are some visible shifts. The 
primary differences appear in the downtown area and in Buckhead. After a presentation of 
citywide trip-making and cruising summaries, a closer look is taken in these areas using the 
street-level data.  

 
Source: FHWA. 

Figure 26. Map. Cruising trip ends, April–September, 2020. 
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Source: FHWA. 

Figure 27. Map. Cruising impact, April–September, 2020. 

In the period of initial restricted travel, the diurnal distributions of trips and cruising trips line up 
quite closely. This is shown in Figure 28. Unlike the historical pattern of a morning and an 
afternoon travel peak, the Atlanta data show trip making increases sharply in the morning from 5 
or 6 to around 8 a.m. Thereafter, trip making remains relatively steady, displaying a somewhat 
flat distribution until around 6 p.m., when the share of trips made declines quite steadily. Figure 
33 superimposes cruising trip rates with time of trip making. Except from midnight to 
approximately 4 a.m., where the proportion of trips cruising is relatively high, the proportion 
remains relatively stable throughout the day, staying consistently between 3 and 6 percent of 
trips. 
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Source: FHWA. 

Figure 28. Graph. Diurnal distribution of trips and cruising trips, April–September, 2020. 

 
Source: FHWA. 

Figure 29. Graph. Diurnal distribution of trips and rate of cruising, April–September, 
2020. 

Relative to the baseline, the trips in the comparison period are far more evenly dispersed across 
the area of detail (Figure 30). The intense destination indicated in the center of downtown in the 
baseline map (Figure 22) no longer exists. 

Looking at Figure 31, which illustrates cruising hot spots, it appears that problematic locations 
for cruising in the baseline have also redistributed to the periphery of the downtown area. 



37 
 

 
Source: FHWA. 

Figure 30. Map. Trip ends area of detail, April–September, 2020. 
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Source: FHWA. 

Figure 31. Map. Cruising area of detail. 

The final section in this use case looks at the diurnal distribution of trips and cruising trips, and 
the rate of cruising on the mixed use streets in Atlanta. 

When focusing on the mixed use streets, it appears that trip making follows the citywide pattern, 
in that traditional peaks are blunted with one peak period lasting from around 6 a.m. to around 6 
p.m. The existence of this peak does not imply congested streets for the period—as peak often 
implies—rather, that trips are concentrated in this time block with no apparent other peaking 
feature. Cruising trips are tracking exactly with all trips until about 8 a.m., after which they are 
more highly concentrated. At about 1 p.m. the daily share of cruising trips begins to fall below 
the rate of all trips, though both are declining. 
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Figure 32 shows a pattern of greater variation in the cruising rate, compared to the same 
geography in the baseline and compared to the citywide averages. Figure 33 shows the diurnal 
distribution of trips with cruise rate superimposed. 

 
Source: FHWA. 

Figure 32. Graph. Diurnal distribution of trips and cruising trips, April–September, 2020. 

 
Source: FHWA. 

Figure 33. Graph. Diurnal distribution of trips with cruise rate superimposed, April–
September, 2020. 
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Summary 

This section described trip making and cruising in Atlanta, focusing on mixed use areas and a 
comparison between the October 2019–March 2020 and April–September 2020 time periods. 
There is no particular policy intervention that had been implemented in the time frame. The 
study team looked instead at areas characterized as mixed use, relative to the rest of the city, and 
two distinct time periods marked by a change in direction with respect to essential travel. 

Top line findings indicate: 

• More cruising in downtown Atlanta and Buckhead, relative to the rest of the city 
• Shifts in trip destinations during the second period with far less intensity on the 

downtown 
• Cruising hot spots do not always correspond with areas of greatest trip making 
• Cruising hot spots during spring and summer 2020 migrated away from Buckhead and 

redistributed around downtown 

CHICAGO, ILLINOIS: YEAR OVER YEAR AND TIME OF DAY 

For the Chicago use case, raw location data were purchased for June 2019, 2020, and 2021. From 
the location data, trips were inferred and analyzed as described earlier in this report. Differences 
are expected from the pre-COVID to the early COVID periods and additional differences to late 
COVID. Unfortunately, the data for June 2021—the late COVID period—were of insufficient 
quality to include in the final analysis. This provides an important caution for users of the tool. 
The deficiency was not important for illustration of a use case, but cautionary where the analysis 
is centered on the geography, in this case Chicago. Additional data should be acquired to 
perform the additional desired or required analysis. The analysis proceeds here with a focus on 
the 2 years for which data are of sufficient quality. 

Where Cruising Occurs 

With the full data set of mapmatched and cruising-identified traces, high cruising areas can be 
identified. Figure 34 and Figure 35 show the cruising rate for each street segment for the 2 
months of data. In other words, the figures show for each trip that traveled along a street 
segment, what percentage of those were cruising trips. Overall, many of the same areas stand 
out, such as the West Loop, Pilsen, Lakeview, Hyde Park, and the area around the convention 
center. A couple high cruising areas located on the periphery of the city, such as the hot spots in 
South Chicago and Riverdale neighborhoods, appear to be noise due to a low quantity of trips in 
the data set. 



41 
 

 
Source: FHWA. 

Figure 34. Map. Cruising 2019. 
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Source: FHWA. 

Figure 35. Map. Cruising 2020. 

The year-over-year comparison is complicated by the fact that the distribution of trips across the 
2 years suggests a different geographic market penetration of the applications from which data 
are collected as well as differences in trip patterns. There are about 40 percent more trips in the 
2020 data set (115,000 in June 2019 and 165,000 in June 2020). As Figure 36 shows, the 
location of trip ends is quite different. In June 2019, trips were heavily concentrated downtown, 
the Near North Side, and Northwest Side; all are predominantly white and affluent areas. While 
the pandemic may explain fewer trips into downtown or to points of interest in some North and 
Northwest Side neighborhoods, it would not explain why so many more trips are occurring in 
other neighborhoods. It is likely, therefore, that the year-over-year differences between June 
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2019 and June 2020 are likely biased by the mix of unknown apps present in the data. The 
broader distribution of trips in 2020 suggests a more distributed data collection base. 

 
Source: FHWA. 

Figure 36. Map. Comparison of trip ends 2019 and 2020. 

With the caveat noted, Figure 37 shows the neighborhood changes in frequency from 2019 to 
2020. 
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Source: FHWA. 

Figure 37. Map. Change in cruising frequency. 

When Cruising Occurs 

Citywide, cruising remains between approximately 6.5 and 7.5 percent for most of the day. For 
trips ending on metered streets, which was 67 percent of trips in 2019 and 60 percent in 2020, the 
rate is between 8 and 9 percent between 10 a.m. and 8 p.m., with a dip to 7 percent at 1 p.m. For 
trips ending on non-metered streets, after a peak of 7.5 percent cruising between 8 and 9 a.m., 
cruising stays between 5 and 6 percent for most of the day. The volatility observed in the early 
morning hours is likely due to the low number of samples during those times. The higher 
variance noted in Figure 38, Figure 39, and Figure 40 supports that hypothesis; that figure set 
illustrates cruising frequency and overall trip making citywide, on metered streets and on non-
metered streets, respectively. 
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Source: FHWA. 

Figure 38. Graph. Diurnal distribution of trips and cruising trips. 

 
Source: FHWA. 

Figure 39. Graph. Diurnal distribution of trips and cruising trips ending on metered 
streets. 
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Source: FHWA. 

Figure 40. Graph. Diurnal distribution of trips and cruising trips ending on unmetered 
streets. 

Just as with the geographic distribution of trips, the differences in the diurnal distribution of trips 
between June 2019 and June 2020 may be genuine or may be caused by differences in the 
underlying data sources. In June 2019, the data show a sharp peak in overall weekday trips at 5 
p.m., while in June 2020, the peak is more spread out, from 2 to 5 p.m. (Figure 41). 

 
Source: FHWA. 

Figure 41. Graph. Diurnal distribution of weekday trips. 
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Cruising frequency remains relatively constant throughout the day in both June 2019 and June 
2020, though it is slightly higher in June 2020 (Figure 42). Despite a lower frequency of cruising 
trips in June 2019, however, as shown in Figure 43, the mean cruising time is consistently higher 
in June 2019 than in June 2020. This finding suggests that, as trips are more distributed, cruising 
locations are more distributed and have less intensity. 

 
Source: FHWA. 

Figure 42. Graph. Cruising frequency by time of day 2019 and 2020. 

 
Source: FHWA. 

Figure 43. Graph. Mean cruising time 2019 and 2020. 
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Do Cruising Patterns Change throughout the Day? 

To mitigate concerns about the respective data sources for different years, the unaggregated data 
from Chicago allow for a high-resolution analysis of diurnal patterns within the same data set; 
the following analyses rely on the 2020 data set. Trips are classified into three time frames 
corresponding to traditional morning and evening peak periods and a midday period. The periods 
are: morning (7–10 a.m.), midday (11 a.m.–3 p.m.), and evening (4–7 p.m.). For the following 
analysis, the more evenly distributed June 2020 data are used. While some areas experienced 
similar levels of cruising throughout the day, in general cruising tended to be more concentrated 
to specific destinations in the morning, and most dispersed at midday (Figure 44). The same 
mapping analysis is shown below for the West Loop (Figure 45); River North (Figure 46) Hyde 
Park (Figure 47), and Lakeview (Figure 48). 

 
Source: FHWA. 

Figure 44. Map. Peak and midday comparison of cruising. 

 
Source: FHWA. 

Figure 45. Map. West Loop cruising peak and midday. 
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The West Loop, a neighborhood home to both wholesale food distributors and trendy restaurants 
and only one train stop, experienced some of the highest rates of cruising across the board. 
Parking is largely unregulated in the area, except along Madison Street, which can be identified 
by the series of meters running the length of the street, and in the southeast corner of the 
neighborhood, where cruising is lower. 

 
Source: FHWA. 

Figure 46. Map. River North cruising peak and midday. 

The neighborhoods north of the Loop have some of the highest densities of retail, office, and 
residential space in the city. Most of these areas have metered streets, with the exception of the 
relatively more residential areas of Streeterville and the Gold Coast. The diurnal pattern of 
cruising here would be consistent with an influx of workers in the morning looking for free 
and/or all-day parking in non-metered areas near their workplaces, and, in the evening, Gold 
Coast residents returning home and competing over limited street parking. 

 
Source: FHWA. 

Figure 47. Map. Hyde Park cruising peak and midday. 

In Hyde Park, the diurnal patterns show that throughout the day, cruising remains high along the 
northeast lakefront section of the neighborhood—an area of concentrated high-rise apartments, in 
contrast to the three-story multifamily buildings found throughout most of the neighborhood. 
The commercial center of the neighborhood around 53rd Street, East Hyde Park Boulevard, and 



50 
 

Lake Park Avenue, also has high rates of cruising during midday and evening hours. In the 
morning, high cruising can be found in the southern part of the neighborhood near the University 
of Chicago, and in particular the University of Chicago Laboratory School, a private school 
serving students from kindergarten to 12th grade, which may reflect parents dropping off 
children, or university faculty and staff searching for parking. 

 
Source: FHWA. 

Figure 48. Map. Lakeview cruising peak and midday. 

In Lakeview, cruising is highest in the evening near the busy entertainment corridor of North 
Halsted Street and North Broadway. Cruising is also high to the north in the Uptown 
neighborhood, where higher density housing is found. 

Metered Streets 

Chicago has metered parking along most commercial corridors throughout the city. In the 2020 
data set 60 percent of trips and 55 percent of cruising trips ended on metered streets. For those 
trips ending on metered streets, 55 percent of cruising vehicle miles traveled were done on 
metered streets.  For cruising trips ending on non-metered streets, only 9 percent of cruising 
miles accrued to metered streets. This could indicate that cruising drivers with trips ending on 
metered blocks are looking for open metered spaces, and not necessarily searching for non-
metered spaces. Likewise, cruising drivers ending their trips on non-metered streets are likely 
looking for non-metered spots. 

At a citywide scale, the relationship between cruising and metered parking may depend on the 
neighborhood-specific land use context. In specific neighborhoods, such as the West Loop, 
Streeterville, and Gold Coast, areas with high frequency of cruising can be seen in unmetered 
areas adjacent to metered areas. These areas are both adjacent to, or even part of, the central 
business district (CBD), where the majority of streets are metered, rather than just the main 
commercial corridors. In neighborhoods farther out, such as Hyde Park, high rates of cruising 
along metered streets may indicate the high demand for parking that the meters are there to 
regulate. 

Another temporal filter can be applied to examine cruising during hours when Chicago’s parking 
meters are turned on and off. Chicago has different meter hours depending on the neighborhood, 
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and parking meters in the Loop are in operation 24 hours per day. Figure 65 shows cruising 
frequency when trips end in places and at times meters are turned on, and in places and at times 
when they are turned off. When meters are turned on, cruising is highest in the two adjacent 
areas to the north and west of the CBD where there are fewer meters present. This could indicate 
people specifically avoiding metered areas and parking as close as possible to the core, or it 
could indicate that a lack of parking regulation in these areas is causing a higher demand than it 
might be if more meters were present. 

When meters are turned off, the highest cruising is found in metered areas in River North and 
just south of the Loop that is not present when meters are turned on. 

 
Source: FHWA. 

Figure 49. Loop cruising meters on and meters off. 

Summary 

The Chicago case is based on raw location data that the project team analyzed directly. Having 
the individual trip trajectories allows a more complex study of the cruising paths taken, rather 
than simply basing findings on where trips end. The overall cruising rate in Chicago fluctuates 
between 6.5 and 7.5 percent, with higher concentrations in the denser and mixed use areas. The 
cruising rate is relatively stable throughout the day in both years analyzed, but shows some 
geographic variation across the day: it is more evenly distributed throughout the city in the 
morning period and more geographically concentrated in the afternoon. Finally, cruising has 
increased in duration in June 2020 relative to 2019.  

Two important cautions arise from this part of the project. First, flexibility and adaptability in 
research design are a prerequisite for creating and presenting impactful analysis. The Chicago 
analysis was meant to be of 3 consecutive years’ worth of data. Poor data quality in the final year 
prevented a complete analysis. Had this been a policy study, additional data should have been 
sought or a different time period substituted. Second, the close analysis of raw data over a 
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relatively abbreviated time frame indicates there are likely biases due to data collection strategy. 
If collection is via particular applications that have more popularity among certain demographic 
groups that will likely also show geographic biases in the location of trip making and trip ends. 
With these kinds of biases an analyst may be unable to identify the worst locations for cruising, 
but could get a critical sense of cruising dynamics in particular areas. Apparent missing data 
could inform data acquisition strategies.  

SEATTLE, WASHINGTON: TWO METER POLICIES 

Seattle has adopted a performance pricing policy for its metered parking streets. Using annual 
surveys to estimate vehicle occupancy, the Seattle Department of Transportation (SDOT) raises, 
lowers, or leaves the same the parking meter prices in order to hit an occupancy/vacancy target. 

The first Seattle case examines cruising before and after price changes to the city’s metered 
parking. The business-as-usual case is examined wherein SDOT does a regularly scheduled 
meter price adjustment. SDOT made a price adjustment on January 28, 2020; the period of 
review is before and after the price change.  

The second case examines cruising in the 2 weeks before and after SDOT temporarily suspended 
all parking meters on April 4, 2020. The city decided to suspend meters to ease the travel burden 
on essential workers.  

For the purposes of both analyses the city was divided into metered streets, near-metered 
streets—on the assumption that meter policy can have spill-over effects on other streets—and 
non-metered areas. Due to the data agreement with the third-party processor, one of the Seattle 
data sources, the number of geographies was limited to 15,000, so trips not ending within 0.5 
miles of metered streets were aggregated to the census block group level. Figure 50 shows 
Seattle’s block groups along with metered and near-metered streets. 

Most of the analysis in this case uses output created by the third-party processor. Raw location 
data for Seattle were also obtained and used in these use cases only where noted. Additional 
discussion related to the use of different data sources generally, and in Seattle specifically, is 
provided in Chapter 4 and Appendix A. 

This section discusses the following: 

• Baseline cruising and trip making in Seattle using data in the period January 6–February 
28, 2020 

• Before-after analysis of the business-as-usual meter price change that occurred on 
January 28, 2020 

• Comparison of the baseline to data obtained for March 21–April 18, 2020 
• Analysis of cruising before and after meter prices were suspended 
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Source: FHWA. 

Figure 50. Map. Seattle study area. 

Where Cruising Occurs  

Census block groups with the highest density of cruising trips tend to be in metered districts 
(shown in outline) in or near the commercial business district, university district, and the 
neighborhoods of Adams, and Fremont. High rates of cruising are also found in parts of west 
Seattle, neighborhoods along Martin Luther King Jr. Way South, and in Lake City. Trips in these 
areas tend to be of shorter duration as proximate parking is likely easier to find (Figure 51). 
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Source: FHWA. 

Figure 51. Map. Cruising frequency. 

Not all cruising trips are the same. A cruising trip could take drivers a little out of their way or 
far out of their way; thus, time spent cruising should be considered along with cruising 
frequency. Figure 52 shows the aggregate level of cruising as aggregate time spent cruising for 
trips that end in each block group, normalized by the length of street in each block group. When 
considering total time spent cruising the problem areas align well with metered areas, suggesting 
that Seattle has appropriately placed its meters where pricing is needed as a curb management 
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strategy. In this case, the map reflects where trips end, not the paths taken by drivers; though it 
appears counterintuitive, a plausible interpretation is that trips with a circuitous component are 
ending on metered blocks with greatest frequency. This could be that drivers are finding vacant 
spaces on metered blocks where they had not on other blocks. This is an affirmation of the meter 
policy that could be abstracted to the blocks where people prefer to park. It could also mean that 
drivers are looking for bargain parking, and when they cannot find it, drivers take paid parking as 
a second choice. Alternatively, this could be a result of cruising occurring in the metered areas 
where, policy goals notwithstanding, meter rates may have been too low to bring demand down 
to the level of supply. 

 
Source: FHWA. 

Figure 52. Map. Cruising impact area. 
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There is also a potentially important boundary effect. With the exceptions of cruising hot spots 
that are completely contained within the metered area, proximate to Pike Place Market and south 
of Lake Union, most of the commercial business district cruising is at the boundary of the 
metered and non-metered areas. This observation could warrant further thought regarding 
expansion of metered areas to discourage bargain hunting that may occur. 

 
Source: FHWA. 

Figure 53. Map. Cruising for parking boundary effects. 

When Cruising Occurs 

Citywide, cruising trips follow a similar diurnal distribution to overall trips (Figure 54), with 
morning and evening peaks. Cruising trips, as a proportion of all trips, ranged between 4.5 and 
8.5 percent throughout the day, with peaks at midday and in the early evening toward the end of 
the evening peak travel period (Figure 55). Both peaks follow the two peaks in the overall trip 
numbers, suggesting that as morning commuters park near their workplaces and evening 
commuters park near their homes or near evening activities, available parking spaces fill up, 
leading to higher rates of cruising for parking.  
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Source: FHWA. 

Figure 54. Graph. Diurnal distribution of trips and cruising trips. 

 
Source: FHWA. 

Figure 55. Graph. Diurnal distribution of trips and cruising as percent of trips. 

In the metered and near-metered areas shown in Figure 56, the cruising lag is more pronounced 
than it is across the city. As shown in Figure 57, the rate of cruising is at its highest around noon, 
remaining high (between 9 and 12 percent of trips) until around 10 p.m. 
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Source: FHWA. 

Figure 56. Graph. Diurnal trips and cruising on metered and near-metered streets. 

 
Source: FHWA. 

Figure 57. Graph. Diurnal distribution of trips and cruising frequency on metered and 
near metered streets. 

For trips that end more than 0.5 miles from metered streets (i.e., non-metered areas hypothesized 
to be largely immune to meter pricing policy and the demands of metered and near-metered 
areas), the midday and evening peaks observed in other areas do not materialize. Between 9 a.m. 
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and midnight, cruising frequency on non-metered streets hovers around 6 percent, varying only 
by just over 1 percent (Figure 58).  

 
Source: FHWA. 

Figure 58. Graph. Diurnal distribution of trips and cruising frequency in non-metered 
areas. 

A disproportionate number of all trips, as well as cruising trips, end on metered streets (Table 2). 
Metered streets make up only 2 percent of overall streets in Seattle, yet account for 14 percent of 
trip ends and 18 percent of cruising trip end points. Near-metered streets are 10 percent of all 
streets, 19 percent of trip ends, and 24 percent of cruising end trips. Calculating the ratio of 
cruising trips to all trips, metered and near-metered streets show similar ratios of 1.24 and 1.22, 
respectively. This is unsurprising since metered streets are located where there is a higher density 
of destinations and a greater demand for parking.  

Table 2. Trip intensity by area type. 

Street Type Share of Trips (%) Share of Cruising Trips (%) Share of Street KM (%) 
Metered 14.2 17.6 1.9 
Near-metered 19.3 23.5 9.9 
Non-metered 66.6 58.9 88.1 

 
As shown in Table 3, vehicles cruising in the non-metered area, a relatively rare event, spend, on 
average, under a minute searching for parking. On the other hand, a cruise trip which is more 
prevalent in the metered areas, takes longest there, with near-metered areas running a close 
second.  
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Table 3. Mean cruising time by time of day, in seconds. 

Street Type 2–4 p.m. 6–8 p.m. Other Times 
Metered 148 140 113 
Near-metered 110 117 111 
Non-metered 57 49 56 

 
Metered and near-meter streets have average cruising times 2–3 times higher than cruising trips 
that end on non-meter streets.  

Comparison: Before versus after Business-as-Usual Meter Price Change 

Consistent with SDOT policy, the January 28, 2020, meter price change entailed either a 50-cent 
increase, 50-cent decrease, or no change, depending on the observed occupancy on a particular 
block.23 This case examines whether this price change had an effect on cruising behavior. The 
date range representing the before condition is January 6–27, 2020. The period of analysis 
representing the after condition is February 5–28. 2020. 

Figure 59 shows the frequency and changes in frequency of cruising on metered, near-metered 
and non-metered blocks. Metered blocks are divided according to whether the price was 
increased, decreased, or held constant. Near-metered streets were classified for price increases, 
decreases, or being held constant based on the policy treatment of the metered block to which 
they are nearest.  

Figure 60 shows the time spent cruising in the metered, near-metered, and non-metered areas. 
The working hypothesis for non-metered areas (i.e., those beyond half a mile of a parking meter) 
is that travel behavior would not be affected by meter price changes. Supporting that hypothesis, 
Figure 60 shows there is no change in frequency of cruising trips ending on blocks in non-
metered areas across the price change.  

The changes in cruising on streets where prices either increased or decreased were small. Where 
meter prices were reduced in Seattle and on near-metered streets proximate to streets with 
metered price drops, the frequency of cruising trip ends also decreased. The decreases are small, 
and likely due to sampling error. The error bars in Figure 59 show the potential statistical 
overlap. On streets where the price was increased—in theory, creating more vacancies—the 
number of trips cruising also increased. This should not be interpreted to mean that price 
increases stimulated additional cruising, but rather that more cruising trips are ending on streets 
where prices were increased because there is more turnover and related availability on those 
streets. In both cases (i.e., whether meter prices were increased or decreased), the amount of time 
a driver spent cruising decreased. Limitations of the data only allow observation of where the trip 
ends. A plausible interpretation is that with increased vacancy, more trips that would have been 
cruising before the price adjustment no longer were—those cruising trips would have ended on 
other blocks or would have taken a longer time. The increase in cruising trips that ended on 
metered streets with price increases is statistically significant; this suggests a real change had 

 
23 S. Davis, Seattle Department of Transportation, SDOT Blog, “Paid parking rate changes are coming your 

way, January 31, 2020. Available at: https://sdotblog.seattle.gov/2020/01/31/paid-parking-rate-changes-are-coming-
your-way/. 

https://sdotblog.seattle.gov/2020/01/31/paid-parking-rate-changes-are-coming-your-way/
https://sdotblog.seattle.gov/2020/01/31/paid-parking-rate-changes-are-coming-your-way/
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been measured. Streets proximate to metered streets that had price increases show a decrease in 
cruising trips, which, again, suggests parking demand is being better accommodated on metered 
blocks.  

 
Source: FHWA. 

Figure 59. Graph. Change in cruising by meter price change and area type. 

 
Source: FHWA. 

Figure 60. Graph. Time spent cruising by meter price change. 
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As the differences are small, albeit consistent, it can take several adjustments before a travel 
behavior change registers. A study of San Francisco showed a change in cruising behavior only 
after eight price changes.24 Although the change in cruising frequency is not significant, the fact 
that cruising frequency is higher in areas that had a price increase confirms SDOT’s information 
on where and when there is higher demand for parking. 

Cruising Pattern Changes in Response to Meter Decommissioning 

In the earliest days of the pandemic, travel patterns changed substantially. In the pre-pandemic 
period, trips followed the expected diurnal distribution with pronounced peaks in the morning 
and late afternoon. By late March–April 2020, however, travel was substantially curtailed and it 
also showed minimal peaking. Trips were low at night and in the early morning, but relatively 
flat between 8 a.m. and 3 p.m., dropping off sharply from there. In response to the COVID 
pandemic, SDOT temporarily suspended all parking meters and time limits, except for residential 
permit zones. This section focuses on an analysis of cruising and travel patterns in the 2 weeks 
before and after the meter suspension on April 4, 2020. To set the context for the meter 
decommissioning, this section first covers the changes in cruising behavior after the initial 
COVID-19 lockdown in March, 2020. 

Figure 61 shows the diurnal distribution of trips before the Government’s guidance to social 
distance and restrict travel and the distribution of trips after that guidance. Figure 62 shows the 
traditional morning and evening peaks for cruising in the before period and the reduced and 
flattened pattern in the after period. 

 
Source: FHWA. 

Figure 61. Graph. Diurnal distribution of baseline trips and early lockdown trips. 

 
24 Adam Millard-Ball, Rachel Weinberger, and Robert C. Hampshire, “Is the Curb 80% Full or 20% Empty? 

Assessing the Impacts of San Francisco’s Parking Pricing Experiment,” Transportation Research Part A: Policy and 
Practice 63 (2014): 76–92. 
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Even at one-third of pre-pandemic trips, cruising frequency was curiously consistent. The 
percentage of trips that included a cruising component in the January–February 2020 time period 
ranged from 4 to 8 percent, with an average daily rate of 7.1 percent. During the early pandemic, 
frequency of cruising trips ranged between about 4 and 8 percent, with an average daily rate of 
6.1 percent. This represents a statistically significant decline, but only of 1 percent. 

 
Source: FHWA. 

Figure 62. Graph. Cruising frequency in early 2020 and in early spring 2020. 

The disaggregated data allow for a detailed spatial snapshot of cruising patterns, and how they 
shifted between winter and spring 2020. Figure 63 shows the rate of cruising along street 
segments in the winter time period (January 6–February 28) and in the spring time period (March 
21–April 18). Mirroring the aggregated output shown above, cruising rates are only slightly 
lower in the spring, despite the large decrease in overall trips. While many residential areas, in 
addition to areas near the University of Washington and east of downtown (home to several 
hospitals), maintained similar cruising rates, neighborhoods with more jobs than residents 
(downtown and the heavily industrial areas south of downtown) saw cruising decrease 
significantly. 
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Source: FHWA.   Source: FHWA. 

A. Seattle cruising hot spots, January–
February 2020. 

B. Seattle cruising hot spots, March– 
April 2020. 

Figure 63. Comparison of cruising hot spots. 

On April 4, 2020, SDOT temporarily suspended all parking meters as a relief measure for 
essential workers. SDOT also temporarily lifted existing time constraints on parking at the 
meters and generally throughout the city. The exception was in residential permit parking areas 
where time limits continued to be enforced.  
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Source: FHWA. 

Figure 64. Graph. Cruising rates before and after meter suspension. 

The frequency and time spent cruising before and after the suspension were compared. Citywide, 
the decision to decommission the parking meters in this period had no discernible impact on 
cruising frequency. As before, there was no change in average cruising time in the non-metered 
areas, which serves as a control. Average cruising time decreased slightly on both metered and 
non-metered streets once the meters were decommissioned. However, the difference is not 
statistically significant (Figure 65). It is possible that travel and cruising behavior were not 
responding to meter prices during such an acute point in the early pandemic.  

 
Source: FHWA. 

Figure 65. Graph. Average time spent cruising before and after meter suspension. 
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Summary 

Two parking meter policies were analyzed in this section. First, a business-as-usual case was 
considered in which SDOT adjusted meter prices according to an annual occupancy survey. 
Second, meter suspension was implemented as part of the city’s response to the pandemic. In the 
first case, there was a consistent decrease in the amount of time a cruising vehicle spent looking 
for parking after the meter rates had been adjusted. In the second case, even though trip-making 
rates had been substantially lowered, compared with the baseline, cruising was consistent, and 
differences before and after the meter suspension were indiscernible. 

The Seattle analysis relies on aggregated data outputs of the third-party processor supplemented 
with raw location data from the data aggregator. The two approaches are taken to showcase the 
relative strengths of each. The third-party data are more abundant providing greater statistical 
confidence. The location data allow for more complex analyses of paths taken. Each has a 
potential function. A comparison of the data sources is provided in appendix A. 

Finally, with respect to the apparent lack of difference in trip making and in cruising following 
the meter policy changes, it is possible that a 2- or 3-week period before and after a policy 
change may be insufficient time in which the market adjusts and differences can be observed.  

 

 

 

 



67 
 

CHAPTER 4. LESSONS LEARNED 

USE CASE SUMMARY 

The project team presented use cases for Cruise Detector. All the cases were analyzed for time of 
day cruising and general geography, and, in all but one case, included a longitudinal analysis. 
The Seattle case analyzed two specific meter pricing policies and also, as briefly noted in 
Chapter 3, acquired data from two distinct sources for the analysis. The Washington, DC, use 
case illustrated different cruising patterns around different land uses, focusing on sports 
arenas/concert venues and rail transit stations. The Atlanta use case highlighted mixed use streets 
and the differences in trip destinations and cruising that arose from travel changes related to the 
pandemic. The Chicago use case presented a year-on-year longitudinal analysis. 

Bringing all the cases together suggests that parking is hardest to find in the late afternoon/early 
evening. In Chicago, Seattle, and Atlanta the most cruising occurred between 4 and 6 p.m. (in 
Washington, DC, the most cruising occurred at noon). A general lag in cruising trips occurs 
shortly after the higher volumes of all trips likely due to earlier trips ending in the use of on-
street parking, and the subsequent lack of availability of such parking leading to cruising. 
Cruising as a percent of trip making varies in a narrow band throughout the day and across cities. 
The latter fact is illustrated in Figure 66. 
Seattle is shown twice in Figure 66, given the two different data sources.  

 
Source: FHWA. 

Figure 66. Cruising across geographies.  

 
Table 4 summarizes the findings across the various use cases. Cruising here was found to add, on 
average, under 2 minutes to travel. In Chicago, in the base case, it added fewer than 3 minutes. 
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The highest rates of cruising were found in Seattle and Chicago where 7.3 and 6.8 percent of 
trips, respectively, showed some portion as cruising. 

Table 4. Summary of data and cruising characteristics. 

City Data Type Baseline Dates 
Average 
Cruising 
Rate (%) 

Average 
Cruising Time 

Peak Hour 
for Cruising 

Trips 
Chicago Disaggregate June 2019 6.8 Under 3 minutes 5 p.m. 
Seattle Disaggregate January 6–

February 28, 2020 
3.6 Under 2 minutes 4 p.m. 

Seattle Aggregate January 6–
February 28, 2020 

7.3 Under 1.5 
minutes 

6 p.m. 

Washington, 
DC 

Aggregate January–
December, 2018 

5.8 2 minutes Noon 

Atlanta Aggregate October 1–
November 25, 
2019; January 6–
March 31, 2020 

4.9 Under 1.5 
minutes 

6 p.m. 

 
CONSIDERATIONS 

This section covers lessons learned on data quality and implementation of the tool. 

Third-Party Processing or Raw Location Data 

In this project raw location data were juxtaposed with processed data. Each approach has 
advantages and disadvantages. In terms of this project, using a third-party processor was costly, 
time consuming, and required a well-defined sense to begin with of how data should ultimately 
be aggregated. The delivery of point data (i.e., where cruising and non-cruising trips ended) 
prevented a detailed analysis of which streets had been traversed. In Seattle, where output 
showed more cruising trip ends on blocks where meter prices had increased, it was only by using 
the raw location data that the project team was able to show that those trips had traversed 
primarily metered streets. Hence, it is assumed drivers were looking for available parking and 
not necessarily looking for free parking. Relying only on trip-end data, the notion that the meter 
price increase meant accommodating more trips rather than causing more cruising (due to 
searching for free parking or lower-cost meters) is a plausible explanation rather than a provable 
or disprovable hypothesis. Using traces that show the entire cruising path would convert 
plausible into provable. 

Another disadvantage of using the third-party processor is that once the data were run and 
aggregated, there were no opportunities to redefine the study areas or more deeply investigate 
questions that might have arisen from initial analysis. 

The advantages of raw location data are the complements to the disadvantages of using the third-
party processed data. At the same time, the raw location data have their own disadvantages. 



69 
 

These data were of varied consistency with fewer guarantees of their quality, primarily due to 
volume. They appeared to be sensitive to or biased by the times of day that applications are used, 
rather than the times of day that people travel. The processed data may have had similar 
shortcomings. The third-party data, being opaque to the analysts, could not be assessed in this 
regard. 

Computing Resources 

Cruise Detector requires a high-performance central processing unit and at least 32 gigabytes 
(GB) of random access memory. Parallel processing capability is recommended, and therefore a 
multicore processor with a minimum of eight cores is recommended. The tool was developed 
and tested using a machine with an Intel® Xeon® W-2265 processor* with 3.5 gigahertz and 12 
cores. On that machine 20 GB of GPS point location data took approximately 10 days to process. 
Users should ensure they have enough hard disk space to store both the raw GPS data and the 
Cruise Detector database. When processing, Cruise Detector may need as much as twice the hard 
drive space as the size of the raw data. The amount of hard drive space can be reduced by 
running the data in smaller batches. Running Cruise Detector in smaller batches also reduces the 
risk of errors or crashes. 

Data Quality Concerns 

Cruise Detector relies on relatively high-resolution GPS traces (recommended minimum of 1 
ping per minute; twice that density is preferred) that identify discrete vehicle trips. In-car 
navigation devices may be likely to provide the most reliable data, but many GPS data vendors 
offer only location data mined from smartphone applications. Often they do not specify the data 
source. Data quality can vary from vendor to vendor, from month to month from the same 
vendor, and across cities from the same vendor. For example, in this project the same vendor 
provided data for Seattle and Chicago. The Chicago data for June 2019 and 2020 were robust; 
Chicago data for June 2021 were of insufficient quality to use. Meanwhile, Seattle data for 2021 
from the same vendor were highly reliable while Chicago data for 2021 were not. Seattle data in 
2019 were of limited use. 

When negotiating with GPS data providers, analysts should consider obtaining samples of data to 
assess the resolution, quality, and any steps that may be needed to turn the sequence of GPS 
points into discrete trips. Information on how the sample was collected (e.g., whether the GPS 
points are from particular applications) may help analysts assess potential biases. Where 
available, analysts should also consider using GPS data that have a known source and sampling 
mechanism, such as those collected as part of GPS-enabled household travel surveys. 

Poor quality data, even if a seemingly large base, can yield too few usable trips. In this case and 
other cases where there may be an insufficient sample size, too few samples will produce 
unreliable results. 

Results can be confounded by time of day use patterns for smart-phone applications. The 
applications-based data generally showed a sharper PM peak than would have been expected 
based on other sources of trip data. This may reflect the greater likelihood that people use their 

 
* Intel, the Intel logo, and Xeon are trademarks of Intel Corporation or its subsidiaries. 
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applications more frequently later in the day. To the extent possible, trip data should be weighted 
against other sources. The rate of cruising, however, remained consistent regardless of the 
number of trips and regardless of the time of day, with the exception of early morning hours (1–4 
a.m.) where cruising was a higher proportion of all trips. 

Applications 

Described below are potential applications of Cruise Detector: 

• Quantifying the extent of cruising for parking and identify hot spots. Cities often try 
and manage cruising for parking based on perceptions of parking scarcity, or complaints 
from residents or business owners. In practice, however, cruising for parking may be 
prevalent in less obvious places, such as older residential neighborhoods with limited off-
street parking or beachfront parks. Cruising may spike in neighborhood commercial areas 
after meters have been turned off for the evening. Cruise Detector provides a data-driven 
way to identify the locations and times of day where cruising is most prevalent.  

• Analyzing the impact of policy interventions. Cities can address cruising by managing 
curb parking, such as installing parking meters, extending meter hours, or adjusting on- 
and off-street parking prices. Better traveler information on parking availability may also 
help to reduce cruising. By using before-and-after GPS data, Cruise Detector can help 
evaluate the success of these interventions on cruising, as illustrated in the Seattle use 
case. However, as in Seattle (and in earlier work in San Francisco25), the impact of a 
single policy change, such as a 25-cent increase in meter rates, can be too small to have a 
detectable impact on cruising. In San Francisco, it was only the cumulative effect of 
multiple price changes that measurably reduced cruising.26 

CONCLUSIONS 

Across all the cities in this analysis, the level of cruising is consistent, even when using different 
data sources. The estimates in this report are also comparable to earlier work using a similar 
methodology. Supplementing Table 4 with findings from San Francisco (4 percent or 6 percent 
cruising, depending on the source) and Ann Arbor (3 percent)27 further illustrates the 
consistency. In those cases, cruising was found to occur for on average about 500 meters—as 
long as it would take a driver to access the top floor of a typical parking structure. 

The consistency, even at times of day or in places where parking is readily available, suggests 
that many trips identified as cruising may not be people searching for parking, but rather people 
taking a longer route for other reasons. For example, longer trips may be due to people taking a 

 
25 Millard-Ball, Adam, Rachel Weinberger, and Robert Hampshire, “Comment on Pierce and Shoup: Evaluating 

the Impacts of Performance-Based Parking,” Journal of the American Planning Association 79, no. 4 (2013): 330–
36, https://doi.org/10.1080/01944363.2014.918481. 

26 Millard-Ball, Adam, Rachel Weinberger, and Robert Hampshire, “Is the Curb 80% Full or 20% Empty? 
Assessing the Impacts of San Francisco’s Parking Pricing Experiment,” Transportation Research Part A: Policy and 
Practice 63 (2014): 76–92, https://doi.org/10.1016/j.tra.2014.02.016. 

27 Weinberger, Rachel & Millard-Ball, Adam & Hampshire, Robert. “Parking search caused congestion: 
Where’s all the fuss?” Transportation Research Part C: Emerging Technologies 120, (2020). 
https://doi.org/10.1016/j.trc.2020.102781.  

https://doi.org/10.1080/01944363.2014.918481
https://doi.org/10.1016/j.tra.2014.02.016
https://doi.org/10.1016/j.trc.2020.102781
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detour to pick up or drop off other passengers, missing a turn because of inattention or 
unfamiliarity with the route, or having arguments with other passengers about where to eat or 
park. Thus, estimates of cruising may overstate a potential parking problem. 

Consistency in the cruising estimates also point to an equilibrium level of cruising. Other work 
indicates that where parking is perceived to be scarce, drivers will often park short of their 
destination, taking the first space they find.28 Where parking is readily available, drivers may be 
more selective about their choice of a parking space. An analogy is how roadway congestion 
reaches an equilibrium as users switch modes or departure times based on their tolerance for 
traffic delay. 

In general, cruising is a localized issue. Cruise Detector can identify hot spots, but even in these 
hot spots, the average time spent cruising is typically brief, and cruising only impacts a relatively 
small percentage of trips. Cruising in the peak city at the peak hour still affects fewer than 10 
percent of trips. A car that parks on the top floor of a parking garage will spend more time 
finding parking than the average driver cruising for an on-street space, although congestion and 
other externalities may be greater for the latter. 

 
 
  

 
28 Millard-Ball, Adam, Robert C. Hampshire, and Rachel R. Weinberger, “Parking Behaviour: The Curious 

Lack of Cruising for Parking in San Francisco,” Land Use Policy 91 (2020), 
https://doi.org/10.1016/j.landusepol.2019.03.031. 
 

https://doi.org/10.1016/j.landusepol.2019.03.031
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APPENDIX A. DATA COMPARABILITY 

COMPARISON OF DATA SOURCES 
The project team acquired output analysis for Seattle from two different sources: proprietary data 
were processed by Cruise Detector, but behind a data secure firewall. Output was provided in the 
form of particular metrics, including number of trips, number of cruising trips, date, and time of 
day for 15,000 units of analysis. The units were a mix of metered streets, streets within half a 
mile of a metered street, and for census block groups beyond that. In addition, the research team 
acquired and processed raw location data for several of the same date periods. The outputs of the 
two sets were compared to understand comparability and whether the sets might be used 
interchangeably.  

The pre-processed output was aggregated into nine policy time periods, six of which overlap 
with the second data source (i.e., the raw location data). The first three time periods correspond 
to most of January and February 2020, divided into before and after the price change. 
Subsequent periods correspond to late March and early April 2020 (before and after the Seattle 
parking meters had been temporarily decommissioned). The two data sets varied widely in terms 
of the volume of trips identified. Trips reported by the third-party processor gradually increased 
in the first three periods, then dramatically dropped for the remaining time periods—consistent 
with local stay-at-home orders. The number of trips per day in the raw location sample increased 
as users (new data sources) were added to their data collection base.  

 
Source: FHWA. 

Figure 67. Chart. Volume comparison. 
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The frequency of cruising was also relatively consistent within each data source, but the raw 
location data showed consistently lower cruising than the processed data. There was also one 
notable drop in cruising in the third policy time period in the raw location data set.  

 
Source: FHWA. 

Figure 68. Chart. Cruising frequency by policy time period. 

In terms of distribution throughout the day, both data sets show the bulk of trips between 8 a.m. 
and 8 p.m. but there are important differences between these extremes. The raw location data 
show trips climbing in the morning to an inflection point, after which they continue to climb but 
at a slower rate. There is a large spike in the afternoon. The processed data displays a diurnal 
pattern more similar to the expectation of a traditional morning and early evening peak.  

 
Source: FHWA. 

Figure 69. Graph. Time-of-day trip distribution Seattle data sources. 
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While the data sets differ temporally, spatially their distribution is much more similar. When the 
data were grouped by the neighborhood in which the trips end, the comparison is much more 
similar (Figure 70). This pattern suggests that both data sets are drawing from a similar cross 
section of Seattle neighborhoods, and the raw location set may be influenced more by when 
people use applications relative to the processed set, which may better describe when people 
make trips. The discrepancy is not important for some of the possible analysis, but it suggests the 
benefit of having independent trip counts in which to weight against. The need for such a step 
would depend on the kind of analysis required. 

 
Source: FHWA. 

Figure 70. Chart. Spatial distribution of trips Seattle data comparison. 

These data sources offer policy analysts new opportunities to gain insights into trip making, 
cruising, and parking behavior. These analyses have demonstrated that although there is great 
potential, limitations in research design may arise from lack of data. Additionally, given the lack 
of transparency in how most data vendors obtain and process their data, researchers should use 
caution when drawing conclusions from any single data set. Nevertheless, Cruise Detector and 
location data can be used to identify potential issues that can be verified with additional data. 
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APPENDIX B. CRUISE DETECTOR USER GUIDE 

INTRODUCTION 

This manual describes how to use the GPS cruising identification model developed by FHWA. 
Any user with a working knowledge of GIS and simple database skills should be able to 
implement the system with the aid of information presented here. This tool uses GPS data to 
estimate the proportion of trips that are cruising for parking. 

SOFTWARE REQUIREMENTS 

Installation 

Install PostgreSQL 13+, PostGIS 3.2+ along with pgrouting 3.3.0+. Using pgadmin 4 is also 
recommended. User will also need to install osm2po and Java 8+ to import a street network. 

The following Python® packages must also be installed: numpy 1.11.3+ scipy 0.19.0+ pandas 
0.19.2+ gpxpy 1.1.2+ psycopg2 2.5.2+ sqlalchemy 1.1.6+ docopt 0.6.1+ 

Create a base directory, and download the cruising and pgMapMatch repositories to that 
directory, and download the sample location data to the cruising folder. Add a folder titled 
“output” to store logs, and unzip the sampleLocationData folder if using. Download osm2po to a 
directory with no spaces in its path. 

DATA REQUIREMENTS AND FORMAT 

Street Network 

The street network should be in pbf format. An extract for specific geographic areas can be 
obtained from geofabrik.de. The extract should be saved to the osm2po base path, if that is 
different from the project base bath. 

Census Boundaries 

Census tract or block group boundaries are used to aggregate results for analysis purposes after 
pgMapMatch has been run on the GPS trace data. Census geographies can be obtained in 
shapefile format from the U.S. Census Bureau’s TIGERweb database. 

Global Positioning System Data 

Location Data 

Data formats may vary by vendor, but the raw GPS location data must be a table containing a 
minimum of: device ID, timestamp, latitude and longitude, and horizontal accuracy. The 
cruising_importLocationData.py script is based on one specific vendor’s data and may require 
alteration to match the format and data structure of the location data obtained. 

 

https://www.postgresql.org/
https://postgis.net/
https://www.pgadmin.org/
http://osm2po.de/
https://www.java.com/en/download/
https://github.com/regionalplanassoc/cruisedetector
https://github.com/amillb/pgMapMatch
https://drive.google.com/file/d/1R1Vu1DW4EewiQ7_Wezf4C62bZDhUzjfp/view?usp=sharing
https://www.geofabrik.de/
https://tigerweb.geo.census.gov/tigerweb/
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The following is an incomplete list of possible location data vendors*: 

• Vera set 
• Quadrant 
• Onemata 
• Lifesight 

Trip Data 

Trip data that have been pre-processed into traces by the vendor can also be used. The imported 
PostgreSQL table must contain: 

• trip_id: unique ID for each trace 
• lines_geom: Linestring M geometry of the trace 
• start_geom: Point M geometry of the start point 
• end_geom: Point M geometry of the end point 

The following is an incomplete list of possible vendors for trip data*:  

• StreetLight 
• AirSage 
• INRIX 
• TomTom 

As with the location data, the list is not comprehensive, not an endorsement and not a guarantee 
the vendor will make usable data available. A collaboration with these firms may be necessary to 
access their data and information. 

CONFIG FILE CHANGES 

User will need to change the configuration settings for Postgres, pgMapMatch, osm2po, and the 
cruising tool itself. 

Postgres. After setting up the postgres database, removing the password requirement allows the 
tool to run smoother. This can be done by changing authentication requirements in the 
pg_hba.conf file to trust. 

Clone the cruising and pgMapMatch repositories, and add a folder titled “output” to store logs. 

cruising. Configuration parameters are located in the cruising.py file. Open cruising.py and set 
the parameters for host, file paths, regions, spatial reference systems, and number of CPU cores 
used for processing. The config file also contains multiple parameters to calibrate trace 
generation from GPS data and identify cruising. 

 
* The names of vendors in this list are included for informational purposes only and are not intended to reflect a 
preference, approval, or endorsement of any one product or entity. 
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pgMapMatch. Open config_template.py and make changes to the pgInfo parameter for the 
postgres database connection. If password has been removed, make sure requirePassword is set 
to False. Save the file as config.py. 

osm2po. Use the osm2po tool to import the OpenStreetMap data into the database. Make a 
couple of changes to the osm2po config file to accurately reflect turn restrictions and one-way 
streets: 

postp.0.class = de.cm.osm2po.plugins.postp.PgRoutingWriter 
postp.1.class = de.cm.osm2po.plugins.postp.PgVertexWriter  
graph.build.excludeWrongWays = true 

LOAD THE DATA 

To get started, create extensions for Postgis and Pgrouting by running the following query in the 
project's PostgreSQL database: 

CREATE EXTENSION postgis; 
CREATE EXTENSION pgrouting; 

Next, run the following in Python IDE: 

import sys 
sys.path.append('[yourBasePath]/cruising') ## change this to your base path 
sys.path.append('[yourBasePath]') 
from cruising import * 
from cruising_importLocationData import * 

Import Street Network 

Run loadTables(region='[yourRegion]') with the respective region as specified in cruising.py, 
which will import the osm street network and turn restriction table into the database. The field 
names for the streets table should match those in the pgMapMatch/config.py. Make sure the SRS 
of the streets table matches the SRS to be used for the location or trip data, and create indexes 
and spatial indexes have been created. Depending on the imported network, it may improve 
performance to clip the street network to a convex hull around the study area. 

To run the sample data, user will need to download the Washington State osm.pbf file to the 
osm2po path and run loadTables(region='wa'). The sample data are comprised of GPS point data, 
which will be used to generate traces, that can then be analyzed for cruising. 

Import Census Boundaries 

Use PostGIS to import the census boundary files to database, and reproject the data to the SRS 
being used. Use a spatial join to add the tract or block group ID to the streets table. 

http://osm2po.de/
http://gis.stackexchange.com/questions/41393/does-osm2po-take-into-consideration-turn-restrictions
https://download.geofabrik.de/north-america/us/washington.html
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Import Global Positioning System Data 

The cruising_importLocationData.py script is based on a specific data vendor and may require 
alteration to match the format and data structure of the location data obtained.  

To import the sample data, set the sample data directory and name for the imported location data 
table points_table and output trace table output_table. 

Run the following code to import the table: 

points_table = 'samplepoints' 
trace_table = 'sampletraces' 
iT = importTable(points_table, 'sampleLocationData', schema = 'public', region = 'wa', 
forceUpdate=True) 
iT.createTable() 
iT.importCSV() 

To generate traces from the sample data, run the following code: 

pts = pointData(points_table, trace_table, schema = 'public', region = 'wa', 
forceUpdate=True) 
pts.geocodePoints() 
pts.processPoints() 
pts.generateTraces() 
pts.generateUniqueIDs() 

Map-Matching from User-Generated Traces 

Once the trace table is created, from either the sample data set or the user’s data, it can be 
mapmatched by running the following code: 

trace_table = "[yourTraceTable]" ##same as the trace_table in the previous section 
tt = traceTable(trace_table, schema = '[yourSchema]', region = '[yourRegion]', 
forceUpdate=True) ## change the table, schema, etc.  
tt.runall() 

This may take several hours, even with the sample data. 

RESULTS AND INTERPRETATION 

Once the trips have been processed the data output can be analyzed with a spreadsheet, python, 
or any statistical package and GIS. See the data dictionary here: 
https://github.com/amillb/cruising/blob/master/data_dictionary.csv. 

  

https://github.com/amillb/cruising/blob/master/data_dictionary.csv
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GLOSSARY FOR THE CRUISE DETECTOR USER GUIDE 

breadcrumb A trail or path made up of a collection of chronologically arranged GPS 
locations. 

Mapmatch A process to match a series of pings or traces to a street network or map. 
Osm2po Both a converter and a routing engine. 
PgInfo Displays information about processor groups hierarchy, its contents, and its 

characteristics. 
Pgmapmatch A map-matching algorithm. 
Pgrouting An extension that adds routing and other network analysis functionality to 

PostGIS/PostgreSQL databases. 
PostGIS A spatial database extender for PostgreSQL object-relational database. 
PostgreSQL Also known as Postgres, a free and open-source relational database 

management system emphasizing extensibility and SQL compliance. 
Reproject To change the projection (coordinate system) of spatial data with another 

projection. 
Spatial join Involves matching rows from the Join Features to the Target Features based 

on their relative spatial locations. 
Trace A related or connected group of pings. 
 
  



82 
 

  



83 
 

APPENDIX C. GLOBAL POSITIONING SYSTEM-INDEPENDENT CRUISE 
ESTIMATOR MODEL ESTIMATION 

OVERVIEW 

The GPS-independent cruise estimator, or G-ICE, addresses an important question: In the 
absence of GPS data, can models be developed to estimate the probability of cruising and what 
data sources would prove useful for this endeavor? The rationale for this tool is that not every 
jurisdiction will be able to obtain GPS data. Thus, to support those places, can a tool be 
developed to estimate cruising even in the absence of GPS data, at least of sufficient quantity and 
quality? By calibrating estimates from cities where there are large samples of GPS traces, the 
objective is to enable a low-cost way for geographical areas that do not have access to these 
traces to estimate cruising with minimal data requirements.  

The research team prioritized data sources that have already been cleaned and are ready to be 
processed and carried out for the analysis across multiple cities. This affords us access to a large 
sample of GPS traces that will be required for calibrating the estimates. Potentially, the model 
could provide an order of magnitude estimate of cruising with minimal data requirements. Given 
the availability of the explanatory variables and depending on the predictive accuracy, G-ICE 
could be used nationwide and was thought might hold the promise of significant utility 
particularly for cities without access to sufficient high-quality GPS data. 

Using both regression and machine learning approaches, the models were structured with 
cruising as a function of: 

• Vectors of covariates of the geographic area including the built environment,  
• A vector of travel- or trip-related covariates including the parking variable, and  
• A vector of temporal attributes such as time of the day and day of the week.  

The research team implemented different structural forms of the regression and machine learning 
architectures to identify the one that provides the best predictive accuracy. Beyond the root mean 
square error and the mean absolute error, measures for the percentage of bad predictions were 
also provided using a 30-percent tolerance threshold value. 

EMPIRICAL MODELS 

To implement the models, the research team used StreetLight and Quadrant proprietary trip data 
from Seattle; Washington, DC; Atlanta; and Chicago with the analysis carried out at the census 
block group level. Explanatory variables include those with predictive power that are publicly 
available or easily accessible irrespective of the jurisdiction. Both regression methods and 
machine learning (multilayer perceptron29 and generalized regression neural networks) 
approaches were employed for the data analyses.  

 
29 A perceptron is a linear classifier that takes input regressors and generates a single binary output via an 

activation function that is triggered when the cumulative sum of the weighted input regressors exceed a specific 
threshold. 
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Dependent variable is cruise—measured either by mean cruising distance or time and a 
categorical form of the cruise variable based on a 250-meter threshold. The categorical variable 
is 0 when the cruising distance is 0, 1 if there is cruising but the cruising distance is less than 250 
meters, and 2 if the mean cruising distance is more than 250 meters. 

Covariates include the following:  

• wkdy: dummy variable that captures whether the trip happened during a weekday or 
weekend (True = Weekday, False = Weekend) 

• peak: dummy variable based on the trip end – equals 1 if the time falls within the peak 
period and 0 otherwise 

• r_den: housing units per acre on unprotected land 
• j_den: jobs per acre on unprotected land  
• p_den: parking meters per acre on unprotected land 
• lnaadt: log of the average annual daily traffic (AADT) of all road segments within the 

CBG 
• city_dummy: dummy for cities; for example, the Seattle dummy equals 1 for all trip 

records from Seattle and 0, otherwise 
• d2a_ephhm: employment and household entropy calculations, where employment and 

occupied housing are both included in the entropy calculations 

Interactions terms were also used. For example, a city dummy (e.g., for Seattle) was interacted 
with day-of-the-week dummy or if the trip ended during the peak hour. The variables above 
provide standardized and widely available data that could be used to develop and validate the 
model. Equally important, if G-ICE were to have enabled accurate predictions, it would have 
relieved cities of the need to purchase the data given that they are non-proprietary. It also 
provides a basis to carry out objective comparisons across jurisdictions. The comparative 
analysis component of the model provides us with the ability to generalize the process to 
additional cities. 

RESULTS 

Three analyses were carried out: multiple linear regression analysis with the cruising estimated 
using conditional expectations, generalized regression neural networks (GRNN), and multilayer 
perceptron. In the regression analysis, what is relevant is the model-explained portion of the 
regression or the explained sum of squares (ESS) relative to the total sum of squares given that 
the focus is on prediction. Consequently, the emphasis is on the ESS that explains the variation 
observed in the modeled values. This is the case whether the mean cruising is measured based on 
time or distance. There was no difference in the goodness of fit when the interacted terms are 
included as regressors. 

Only a marginal difference was observed for the mean square error from the GRNN compared to 
that of the linear regression. The percentage of bad predictions (a 30-percent threshold) also 
buttresses the results obtained from earlier methods. The plot of residuals versus predicted values 
has very high positive values for the residual—an indication that the predictions were too low. 
Ideally, these values should be close to zero given that the residual, for each observation, is 
simply the actual minus the predicted cruising. 
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To expatiate on the previous analyses, the mean cruising distance was changed to a categorical 
variable using a 250-meter average cruising distance threshold. A multilayer perceptron (MLP) 
neural network was subsequently run with cruise as the dependent variable and with two hidden 
layers, each with a hundred nodes (neurons). Using the predict command where the predicted 
value defaults to the option with the highest probability, a predicted accuracy of 88 percent 
across all the cities that were featured in the analysis was obtained. This, however, inflated the 
goodness of fit given the number of observations with zero cruise. For cruises classified as 
moderate (cruise=1), only 4 percent of the predictions are right while none of the predictions for 
high cruising (cruise=2) is right. This is a source of concern given that these are instances when a 
false negative cannot be afforded—situations where there is cruising and there may be need to 
put countermeasures in place, but the predicted value says otherwise. 

CONCLUSION 

As mentioned, the 88 percent accuracy figure obtained for the MLP inflates the goodness of fit 
given that none of the specific instances of cruise=2 (high cruising) were predicted correctly. 
This is problematic given that it is in this situation that the public may be sensitive to Type II 
errors or false negatives (no cruising) when there is indeed cruising. The research team surmises 
that determinants of cruising are localized (temporally) events, which were not adequately 
reflected for the present analysis. For example, it is difficult to have decent predictive powers 
when covariates are based on average values over time—e.g., AADT—or when values used have 
no temporal association to the present. Policy effects are nuanced—for example, the research 
team found a statistically significant increase in distance cruised when the parking meters were 
switched off in Seattle though this happened at a time when total trips were about one third of 
prior trip making, between March and April 2020 when the city was on lockdown. G-ICE did not 
successfully project this outcome. 
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